二叉排序树的实现


问题描述及要求
产生一个菜单驱动的演示程序,用以说明二叉树的使用。元素由单个键组成,键为单个字符。用户能演示的二叉树基本操作至少包括:构造二叉树,按先序、中序、后序、层序遍历这棵二叉树,求二叉树的深度、宽度,统计度为0,1,2的结点数等。二叉树采用链式存储结构。对二叉查找树做上述工作,且增加以下操作:插入、删除给定键的元素、查找目标键。

由于没使用类模板,请使用二叉树演示时此处为char
在这里插入图片描述而使用二叉排序树时将char 改为int。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
#include<iostream>
#include<string>
#include<map>
#include<algorithm>
#include<memory.h>
#include<cmath>
#include<queue>
#define pii pair<int,int>
#define FAST ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
using namespace std;
typedef long long ll;
typedef char datatype;
const int Max = 1e3 + 5;
int h,ht, d1, d2, d0;

struct BiNode
{
datatype data;
BiNode *lchild, *rchild;
};
BiNode* fa;
class BiTree
{
public:
BiTree() { root = Create(); }
void PreOrder() { PreOrder(root); }
void InOrder() { InOrder(root); }
void PostOrder() { PostOrder(root); }
void LevelOrder();
void IterativePreorder();
void get_high() { h = 0;get_high(root); }
void get_node() { d0 = d1 = d2 = 0;get_node(root); }
void get_width();
private:
BiNode* Create();
void Release(BiNode* bt);
void PreOrder(BiNode* bt);
void InOrder(BiNode* bt);
void PostOrder(BiNode* bt);
void get_high(BiNode* bt);
void get_node(BiNode* bt);
BiNode* root;
};

void BiTree::IterativePreorder()
{
BiNode* stack[Max];
int top = -1;
if (root == NULL)return;
stack[++top] = root;
while (top!=-1)
{
BiNode* p = stack[top];
cout << p->data << endl;
top--;
if (p->rchild != NULL)stack[++top] = p->rchild;
if (p->lchild != NULL)stack[++top] = p->lchild;
}
}

void BiTree::get_node(BiNode* bt)
{
if (bt->lchild != NULL && bt->rchild != NULL)
{
d2++;
get_node(bt->lchild);
get_node(bt->rchild);
}
else if (bt->lchild!=NULL)
{
d1++;
get_node(bt->lchild);
}
else if (bt->rchild != NULL)
{
d1++;
get_node(bt->rchild);
}
else
{
d0++;
return;
}
}

void BiTree::get_high(BiNode* bt)
{
ht++;
if (bt == NULL)return;
if (bt->lchild == NULL && bt->rchild == NULL)
{
h = max(h, ht);
return;
}
get_high(bt->lchild);
ht--;
get_high(bt->rchild);
ht--;
}

void BiTree::PreOrder(BiNode* bt)
{
if (bt == NULL)return;
else
{
cout << bt->data << endl;
PreOrder(bt->lchild);
PreOrder(bt->rchild);
}
}

void BiTree::InOrder(BiNode* bt)
{
if (bt == NULL)return;
else
{
InOrder(bt->lchild);
cout << bt->data << endl;
InOrder(bt->rchild);
}
}

void BiTree::PostOrder(BiNode* bt)
{
if (bt == NULL)return;
else
{
PostOrder(bt->lchild);
PostOrder(bt->rchild);
cout << bt->data << endl;
}
}

void BiTree::LevelOrder()
{
BiNode* Q[Max], * q = NULL;
int front = -1, rear = -1;
if (root == NULL) return;
Q[++rear] = root;
while (front != rear)
{
q = Q[++front];
cout << q->data << endl;
if (q->lchild != NULL)Q[++rear] = q->lchild;
if (q->rchild != NULL)Q[++rear] = q->rchild;
}
}

BiNode* BiTree::Create()
{
BiNode* bt;
datatype ch;
cin >> ch;
if (ch == '#')bt = NULL;
else
{
bt = new BiNode;
bt->data = ch;
bt->lchild = Create();
bt->rchild = Create();
}
return bt;
}

class BiSortTree
{
public:
BiSortTree(int a[], int n);
//~BiSortTree() { Release(root); }
BiNode* InsertBST(datatype x) { return InsertBST(root, x); }
void DeleteBST(datatype x);
BiNode* SearchBST(datatype x) { return SearchBST(root, x); }
BiNode* find(const datatype key) { return find(root, key); }
void PreOrder() { PreOrder(root); }
void InOrder() { InOrder(root); }
void PostOrder() { PostOrder(root); }
void LevelOrder();
void get_high() { h = 0;get_high(root); }
void get_node() { d0 = d1 = d2 = 0;get_node(root); }
void get_width();
private:
BiNode* InsertBST(BiNode* bt, datatype x);
BiNode* SearchBST(BiNode* bt, datatype x);
BiNode* find(BiNode* root, const datatype key);
void get_high(BiNode* bt);
void get_node(BiNode* bt);
void Release(BiNode* bt);
void PreOrder(BiNode* bt);
void InOrder(BiNode* bt);
void PostOrder(BiNode* bt);
BiNode* root;
};



BiNode* BiSortTree::SearchBST(BiNode* bt, datatype x)
{
if (bt == NULL) return NULL;
if (bt->data == x)return bt;
else if (bt->data > x)return SearchBST(bt->lchild, x);
else return SearchBST(bt->rchild, x);
}

BiNode* BiSortTree::InsertBST(BiNode* bt, datatype x)
{
if (bt == NULL)
{
BiNode* s = new BiNode;
s->data = x;
s->lchild = s->rchild = NULL;
bt = s;
return bt;
}
else if (bt->data > x)
{

if (bt->lchild == NULL)bt->lchild = InsertBST(bt->lchild, x);
else InsertBST(bt->lchild, x);
}
else
{
if (bt->rchild == NULL)bt->rchild = InsertBST(bt->rchild, x);
else InsertBST(bt->rchild, x);
}
}

BiSortTree::BiSortTree(int a[], int n)
{
root = NULL;
for (int i = 0;i < n;i++)
{
if (i == 0) root = InsertBST(root, a[i]);//在插入操作时,当root节点为空时分配根节点空间,并且root的地址不会改变。
else InsertBST(root, a[i]);
}
}

BiNode* BiSortTree::find(BiNode* root,const datatype key)
{
fa = NULL;
BiNode* cur = root;
while (cur != NULL && cur->data != key)
{
fa = cur;
if (key > cur->data)cur = cur->rchild;
else cur = cur->lchild;
}
if (cur == NULL)return NULL;
return cur;
}

void BiSortTree::DeleteBST(datatype x)
{
BiNode* p = find(x);
if ((p->lchild == NULL) && (p->rchild == NULL))
{
if (fa == NULL);
else if (fa->lchild == p)fa->lchild = NULL;
else if (fa->rchild == p)fa->rchild = NULL;
delete p;return;
}
if (p->rchild == NULL)
{
if (fa == NULL)
{
root = p->lchild;
delete p;return;
}
else
{
if (fa->lchild == p)fa->lchild = p->lchild;
else if (fa->rchild == p)fa->rchild = p->lchild;
delete p;return;
}
}
if (p->lchild == NULL)
{
if (fa == NULL)
{
root = p->rchild;
delete p;return;
}
else
{
if (fa->lchild == p)fa->lchild = p->rchild;
else if (fa->rchild == p)fa->rchild = p->rchild;
delete p;return;
}
}
BiNode* par = p, * s = p->lchild;
while (s->rchild != NULL)
{
par = s;
s = s->rchild;
}
if (par->lchild == s)par->lchild = NULL;
if (par->rchild == s)par->rchild = NULL;
p->data = s->data;
if (par == p)par->lchild = s->lchild;
else par->rchild = s->lchild;
delete s;
}

void BiSortTree::get_node(BiNode* bt)
{
if (bt->lchild != NULL && bt->rchild != NULL)
{
d2++;
get_node(bt->lchild);
get_node(bt->rchild);
}
else if (bt->lchild != NULL)
{
d1++;
get_node(bt->lchild);
}
else if (bt->rchild != NULL)
{
d1++;
get_node(bt->rchild);
}
else
{
d0++;
return;
}
}

void BiSortTree::get_high(BiNode* bt)
{
ht++;
if (bt == NULL)return;
if (bt->lchild == NULL && bt->rchild == NULL)
{
h = max(h, ht);
return;
}
get_high(bt->lchild);
ht--;
get_high(bt->rchild);
ht--;
}

void BiSortTree::PreOrder(BiNode* bt)
{
if (bt == NULL)return;
else
{
cout << bt->data << endl;
PreOrder(bt->lchild);
PreOrder(bt->rchild);
}
}

void BiSortTree::InOrder(BiNode* bt)
{
if (bt == NULL)return;
else
{
PreOrder(bt->lchild);
cout << bt->data << endl;
PreOrder(bt->rchild);
}
}

void BiSortTree::PostOrder(BiNode* bt)
{
if (bt == NULL)return;
else
{
PreOrder(bt->lchild);
PreOrder(bt->rchild);
cout << bt->data << endl;
}
}

void BiSortTree::LevelOrder()
{
BiNode* Q[Max], * q = NULL;
int front = -1, rear = -1;
if (root == NULL) return;
Q[++rear] = root;
while (front != rear)
{
q = Q[++front];
cout << q->data << endl;
if (q->lchild != NULL)Q[++rear] = q->lchild;
if (q->rchild != NULL)Q[++rear] = q->rchild;
}
}

void project()
{
cout << "选择演示二叉树输入:1" << endl << "选择演示二叉查找树输入:2" << endl;
int sec;cin >> sec;

if (sec == 1)
{
cout << "请先创建二叉树" << "输入根节点后依次输入左子树结点和右子树结点,如果空则输入#" << endl;
BiTree tree;
system("cls");
while (1)
{
system("cls");
cout << "输入:1输出前序遍历" << endl;
cout << "输入:2输出中序遍历" << endl;
cout << "输入:3输出后序遍历" << endl;
cout << "输入:4输出层序遍历" << endl;
cout << "输入:5输出度为0、1、2的结点数" << endl;
cout << "输入:6输出树的高度" << endl;
cout << "输入:7输出前序遍历" << endl;
cout << "输入:8输出树的宽度" << endl;
int sec;cin >> sec;
switch (sec)
{
case 1:
tree.PreOrder();
break;
case 2:
tree.InOrder();
break;
case 3:
tree.PostOrder();//tree.IterativePreorder();非递归
break;
case 4:
tree.LevelOrder();
break;
case 5:
tree.InOrder();
break;
case 6:
tree.get_high();cout << "树的高度为" << h << endl;
break;
case 7:
tree.get_node();cout << "度为0结点数:" << d0 << "度为1结点数:" << d1 << "度为2结点数:" << d2 << endl;
break;
}
cout << "退出输入:1,继续操作输入:0" << endl;
int f;cin >> f;
if (f)break;
}
}
else if (sec == 2)
{
cout << "请先创建二叉排序树" << "先输入要输入结点的个数,再输入一组整数以空格隔开" << endl;
int lst[Max];
int n;cin >> n;for (int i = 0;i < n;i++)cin >> lst[i];
BiSortTree tree(lst,n);
system("cls");
while (1)
{
system("cls");
cout << "输入:1输出前序遍历" << endl;
cout << "输入:2输出中序遍历" << endl;
cout << "输入:3输出后序遍历" << endl;
cout << "输入:4输出层序遍历" << endl;
cout << "输入:5输出度为0、1、2的结点数" << endl;
cout << "输入:6输出树的高度" << endl;
cout << "输入:7输出前序遍历" << endl;
cout << "输入:8输出树的宽度" << endl;
cout << "输入:9增加一个结点" << endl;
cout << "输入:10删除一个结点" << endl;
cout << "输入:11查找一个结点" << endl;
int sec;cin >> sec;cout << endl;
switch (sec)
{
case 1:
tree.PreOrder();
break;
case 2:
tree.InOrder();
break;
case 3:
tree.PostOrder();
break;
case 4:
tree.LevelOrder();
break;
case 5:
tree.get_node();cout << "度为0结点数:" << d0 << "度为1结点数:" << d1 << "度为2结点数:" << d2 << endl;
break;
case 6:
tree.get_high();cout << "树的高度为" << h << endl;
break;
case 7:
tree.PreOrder();
break;
case 9:
cout << "请输入想要加入的结点" << endl;
int x;cin >> x;
tree.InsertBST(x);
break;
case 10:
cout << "请输入想要删除的结点" << endl;
int xx;cin >> xx;
tree.DeleteBST(xx);
break;
case 11:
cout << "请输入想要查找的结点" << endl;
int xxx;cin >> xxx;int f = 0;
if (tree.find(xxx) == NULL)cout << "无此结点" << endl;
else cout << "存在此节点" << endl;
break;
}
cout << "退出输入:1,继续操作输入:0" << endl;
int f;cin >> f;
if (f)break;
}
}
}

int main()
{
project();
return 0;
}

Author: cyy
Reprint policy: All articles in this blog are used except for special statements CC BY 4.0 reprint policy. If reproduced, please indicate source cyy !
 Previous
二叉树顺序存储、链式存储及之间的转化 二叉树顺序存储、链式存储及之间的转化
二叉树顺序存储、链式存储及之间转化与遍历。二叉树的存储可用顺序存储方式和链式存储方式,其中顺序存储时存储地址相邻,空间利用率高,但不易进行元素的增删等操作。而链式存储方式的元素可随意存放,但其存储空间所占为数据元素和指针所占空间,存储空间利
2021-10-15 cyy
Next 
文字交互电子宠物游戏 文字交互电子宠物游戏
电子宠物游戏 设计一款文字式交互电子宠物游戏,该游戏要求具备如下要素: 一、玩家(Player),玩家具备如下要素:体力:体力是玩家行动的关键要素,玩家最高拥有100点体力值,每种不同行动都会消
2021-10-14 cyy
  TOC